2D Pipeline Tutorial#
This tutorial demonstrates how to use InterSCellar for 2D spatial omics analysis.
Cell Neighbor Detection & Graph Construction#
The 2D pipeline starts with detecting cell neighbors based on surface distance:
import interscellar
neighbors_2d, adata, conn = interscellar.find_cell_neighbors_2d(
polygon_json_path="data/cell_polygons.json",
metadata_csv_path="data/cell_metadata.csv",
max_distance_um=1.0,
pixel_size_um=0.1085,
n_jobs=4
)
Parameters#
polygon_json_path: Path to JSON file containing cell polygon coordinatesmetadata_csv_path: Path to CSV file with cell metadatamax_distance_um: Maximum distance in micrometers for neighbor detectionpixel_size_um: Pixel size in micrometersn_jobs: Number of parallel jobs
Output#
The function returns:
* neighbors_2d: DataFrame with neighbor pairs
* adata: AnnData object (if available) with graph information
* conn: Database connection object